docker容器下搭建kong的集群很简单,官网介绍的也很简单,初学者也许往往不知道如何去处理,经过本人的呕心沥血的琢磨,终于搭建出来了。
主要思想:不同的kong连接同一个数据库(就这么一句话)
难点:如何在不同的主机上用kong连接同一数据库
要求:
1、两台主机 172.16.100.101 172.16.100.102
步骤:
1、在101上安装数据库(这里就用cassandra)
docker run -d --name kong-database -p 9042:9042 cassandra:latest
2、迁移数据库(可以理解初始化数据库)
docker run --rm --link kong-database:kong-database -e "KONG_DATABASE=cassandra" -e "KONG_PG_HOST=kong-database" -e "KONG_CASSANDRA_CONTACT_POINTS=kong-database" kong:latest kong migrations up
3、安装kong
docker run -d --name kong --link kong-database:kong-database -e "KONG_DATABASE=cassandra" -e "KONG_PG_HOST=kong-database" -e "KONG_CASSANDRA_CONTACT_POINTS=kong-database" -e "KONG_PROXY_ACCESS_LOG=/dev/stdout" -e "KONG_ADMIN_ACCESS_LOG=/dev/stdout" -e "KONG_PROXY_ERROR_LOG=/dev/stderr" -e "KONG_ADMIN_ERROR_LOG=/dev/stderr" -p 8000:8000 -p 8443:8443 -p 8001:8001 -p 8444:8444 kong:latest
注意:以上三部都是在101上完成的,且官网上都有https://getkong.org/install/docker/"htmlcode">
docker run -d --name kong -e "KONG_DATABASE=cassandra" -e "KONG_PG_HOST=kong-database" -e "KONG_CASSANDRA_CONTACT_POINTS=172.16.100.101" -e "KONG_PROXY_ACCESS_LOG=/dev/stdout" -e "KONG_ADMIN_ACCESS_LOG=/dev/stdout" -e "KONG_PROXY_ERROR_LOG=/dev/stderr" -e "KONG_ADMIN_ERROR_LOG=/dev/stderr" -p 8000:8000 -p 8443:8443 -p 8001:8001 -p 8444:8444 kong:latest
5、这里使用的是cassandra数据库,所以需要修改一个配置 db_update_propagation 这个参数,默认是0,可以改成 5,进入容器
docker exec -it kong bash //进入kong容器 cd etc/kong //进入该目录下 cp kong.conf.default kong.conf //复制kong.conf.default文件为kong.conf文件 vi kong.conf //修改db_update_propagation这个配置项
exit //退出空容器
docker restart kong //重新启动kong
注:101和102上的kong都需要修改这个配置项,关于db_update_propagation配置项的介绍可以去官网看下
6、验证kong集群
可以在101上注册一个api如下
curl -i -X POST --url http://172.16.100.101:8001/apis/ --data 'name=example-api' --data 'hosts=example.com' --data 'upstream_url=http://mockbin.org'
然后查询这个api是否注册成功:
curl -i http://172.16.100.101:8001/apis/example-api
返回如下:
你也可以通过102机器主机进行查询:
curl -i http://172.16.100.102:8001/apis/example-api
如果也返回和上面一样的结果说明可以访问同一个api了,api信息是保存在数据库中的,也是就说可以访问同一个数据库了,这样你的kong集群也就搭建成功了,希望对你有所帮助。
补充知识:使用docker-compose创建hadoop集群
下载docker镜像
首先下载需要使用的五个docker镜像
docker pull bde2020/hadoop-namenode:1.1.0-hadoop2.7.1-java8 docker pull bde2020/hadoop-datanode:1.1.0-hadoop2.7.1-java8 docker pull bde2020/hadoop-resourcemanager:1.1.0-hadoop2.7.1-java8 docker pull bde2020/hadoop-historyserver:1.1.0-hadoop2.7.1-java8 docker pull bde2020/hadoop-nodemanager:1.1.0-hadoop2.7.1-java8
设置hadoop配置参数
创建 hadoop.env 文件,内容如下:
CORE_CONF_fs_defaultFS=hdfs://namenode:8020 CORE_CONF_hadoop_http_staticuser_user=root CORE_CONF_hadoop_proxyuser_hue_hosts=* CORE_CONF_hadoop_proxyuser_hue_groups=* HDFS_CONF_dfs_webhdfs_enabled=true HDFS_CONF_dfs_permissions_enabled=false YARN_CONF_yarn_log___aggregation___enable=true YARN_CONF_yarn_resourcemanager_recovery_enabled=true YARN_CONF_yarn_resourcemanager_store_class=org.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStore YARN_CONF_yarn_resourcemanager_fs_state___store_uri=/rmstate YARN_CONF_yarn_nodemanager_remote___app___log___dir=/app-logs YARN_CONF_yarn_log_server_url=http://historyserver:8188/applicationhistory/logs/ YARN_CONF_yarn_timeline___service_enabled=true YARN_CONF_yarn_timeline___service_generic___application___history_enabled=true YARN_CONF_yarn_resourcemanager_system___metrics___publisher_enabled=true YARN_CONF_yarn_resourcemanager_hostname=resourcemanager YARN_CONF_yarn_timeline___service_hostname=historyserver YARN_CONF_yarn_resourcemanager_address=resourcemanager:8032 YARN_CONF_yarn_resourcemanager_scheduler_address=resourcemanager:8030 YARN_CONF_yarn_resourcemanager_resource___tracker_address=resourcemanager:8031
创建docker-compose文件
创建 docker-compose.yml 文件,内如如下:
version: "2" services: namenode: image: bde2020/hadoop-namenode:1.1.0-hadoop2.7.1-java8 container_name: namenode volumes: - hadoop_namenode:/hadoop/dfs/name environment: - CLUSTER_NAME=test env_file: - ./hadoop.env resourcemanager: image: bde2020/hadoop-resourcemanager:1.1.0-hadoop2.7.1-java8 container_name: resourcemanager depends_on: - namenode - datanode1 - datanode2 - datanode3 env_file: - ./hadoop.env historyserver: image: bde2020/hadoop-historyserver:1.1.0-hadoop2.7.1-java8 container_name: historyserver depends_on: - namenode - datanode1 - datanode2 - datanode3 volumes: - hadoop_historyserver:/hadoop/yarn/timeline env_file: - ./hadoop.env nodemanager1: image: bde2020/hadoop-nodemanager:1.1.0-hadoop2.7.1-java8 container_name: nodemanager1 depends_on: - namenode - datanode1 - datanode2 - datanode3 env_file: - ./hadoop.env datanode1: image: bde2020/hadoop-datanode:1.1.0-hadoop2.7.1-java8 container_name: datanode1 depends_on: - namenode volumes: - hadoop_datanode1:/hadoop/dfs/data env_file: - ./hadoop.env datanode2: image: bde2020/hadoop-datanode:1.1.0-hadoop2.7.1-java8 container_name: datanode2 depends_on: - namenode volumes: - hadoop_datanode2:/hadoop/dfs/data env_file: - ./hadoop.env datanode3: image: bde2020/hadoop-datanode:1.1.0-hadoop2.7.1-java8 container_name: datanode3 depends_on: - namenode volumes: - hadoop_datanode3:/hadoop/dfs/data env_file: - ./hadoop.env volumes: hadoop_namenode: hadoop_datanode1: hadoop_datanode2: hadoop_datanode3: hadoop_historyserver:
创建并启动hadoop集群
sudo docker-compose up
启动hadoop集群后,可以使用下面命令查看一下hadoop集群的容器信息
# 查看集群包含的容器,以及export的端口号 sudo docker-compose ps Name Command State Ports ------------------------------------------------------------ datanode1 /entrypoint.sh /run.sh Up 50075/tcp datanode2 /entrypoint.sh /run.sh Up 50075/tcp datanode3 /entrypoint.sh /run.sh Up 50075/tcp historyserver /entrypoint.sh /run.sh Up 8188/tcp namenode /entrypoint.sh /run.sh Up 50070/tcp nodemanager1 /entrypoint.sh /run.sh Up 8042/tcp resourcemanager /entrypoint.sh /run.sh Up 8088/tc # 查看namenode的IP地址 sudo docker inspect namenode | grep IPAddress
也可以通过 http://:50070 查看集群状态。
提交作业
要提交作业,我们首先需要登录到集群中的一个节点,这里我们就登录到namenode节点。
sudo docker exec -it namenode /bin/bash
准备数据并提交作业
cd /opt/hadoop-2.7.1 # 创建用户目录 hdfs dfs -mkdir /user hdfs dfs -mkdir /user/root # 准备数据 hdfs dfs -mkdir input hdfs dfs -put etc/hadoop/*.xml input # 提交作业 hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar grep input output 'dfs[a-z.]+' # 查看作业执行结果 hdfs dfs -cat output/*
清空数据
hdfs dfs -rm input/* hdfs dfs -rmdir input/ hdfs dfs -rm output/* hdfs dfs -rmdir output/
停止集群
可以通过CTRL+C来终止集群,也可以通过 “sudo docker-compose stop”。
停止集群后,创建的容器并不会被删除,此时可以使用 “sudo docker-compose rm” 来删除已经停止的容器。也可以使用 “sudo docker-compose down” 来停止并删除容器。
删除容器后,使用 “sudo docker volume ls” 可以看到上面集群使用的volume信息,我们可以使用 “sudo docker rm ” 来删除。
以上这篇使用docker搭建kong集群操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
docker搭建,kong集群
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]